

Solarpraxis Engineering GmbH · Alboinstraße 36-42 · 12103 Berlin, Germany

Yield Assessment Report Harre

Harre Solar Farm, (Jutland) Denmark

Client:

European Energy Gyngemose Parkvey 50 2860 Søborg, Denmark

Assessor:

Fabian Kroemke Solarpraxis Engineering GmbH Alboinstr. 36-42 12103 Berlin Germany Tel: 030/726 296-390 Fax: 030/726 296-360 E-Mail: fabian.kroemke@solarpraxis.com Internet: www.solarpraxis.com

Date: 28.02.2020

Project: P20127

 Phone: +49 (0) 30 - 72 62 96 - 350
 District Court: Charlottenburg
 Berliner Sparkasse

 Fax: +49 (0) 30 - 72 62 96 - 360
 HRB 151694 B
 Swift/BIC: BELADEI
 12103 Berlin, GermanyE-Mail: info@solarpraxis.comVAT-No.: 37/002/52120IBAN: DE95 1005 0000 0190 2330 95General Manager: Felix Eichhornwww.solarpraxis.comVAT-No.: 37/002/52120IBAN: DE95 1005 0000 0190 2330 95

Swift/BIC: BELADEBEXXX

Table of Contents

1	Sum	Summary of Results4				
2	Purp	ose and	object of the Assessment	5		
	2.1	System Description				
		2.1.1	Type of Mounting (2 systems)	5		
		2.1.2	Orientation of the Modules	5		
		2.1.3	Modules	6		
		2.1.4	Inverters	6		
		2.1.5	Transformers	6		
		2.1.6	Power Transformer on POC	6		
		2.1.7	Module Interconnection	6		
	2.2	Metho	dology of the Assessment	7		
		2.2.1	Component Simulation	7		
		2.2.2	Temperature Behaviour	7		
		2.2.3	Manufacturer's tolerance	7		
		2.2.4	Light induced degradation (LID)	7		
		2.2.5	Mismatch	7		
		2.2.6	Cable losses	7		
		2.2.7	Transformer losses	8		
		2.2.8	Dirt and Soiling	8		
		2.2.9	Horizon shading	8		
		2.2.10	Site and Shading	9		
		2.2.11	Meteorological Data	12		
		2.2.12	Simulation program	12		
3	Asse	essment	of the System's Technical Design	13		
	3.1	Monito	pring	13		
	3.2	Module	e Certification	13		
	3.3	Design	and Sizing	13		
4	Fore	cast Ene	rgy Yield	14		
	4.1	Perforr	nance Ratio	14		
	4.2	Monthly Distribution of vield (P50 values)				
	4.3	Uncert	ainty Analysis	17		
		431	Margin of variation	18		
		4.3.2	Probability of excess production			
		4.3.3	Variations in annual vield			
			,			

5	Glossary	. 20
6	List of figures	. 24
7	List of tables	. 25
A	Appendix	. 26

1 Summary of Results

For the photovoltaic system under examination with an STC output of **44,418** kW_p , an average annual energy yield of **56,477** MWh has been calculated, taking into consideration the components used and the chosen location.

This results in an average annual specific yield of **1,272 kWh/kW**_p (P50 value) and a Performance Ratio of **91.2 %** (weighted average).

The total uncertainty has a standard deviation of **5.5 %.**

These figures are to be regarded as weighted average figures for an "average irradiation year" (here: **1,055 kWh/m**² on the horizontal) in accordance with the consideration of a plant availability of 100 % and a power factor of 1.

The system will be built with 2 structures:

Field 1 fix tilt with an STC output of **6,932 kW**_p, results in an average annual energy yield of **7,311 MWh**.

Field 2 single axis tracker with an STC output of **37,487 kW**_p, results in an average annual energy yield of **49,166 MWh**.

No ageing degradation of the modules is considered for this evaluation.

2 Purpose and object of the Assessment

Forecast of annual average energy yield of the photovoltaic plant till POC including power transformer and MV line.

2.1 System Description

Location: Harre (Jutland), Denmark (56.718° N, 8.934° E)

Total PV power: 44,418 kW_p

2.1.1 Type of Mounting (2 systems)

Free standing fixed system

Arrangement: 2 modules, portrait

Row spacing (Pitch): 6.3 m

Sun Angle (21. December, 12 Noon): 9.8°

Shading Angle: 35.6°

Single axis tracking system East/West

Arrangement: 1 module, portrait

Rotation limitations: 55°

Row spacing (Pitch): 5.0 m

Sun Angle (21. December, 12 Noon): 9.8°

Shading Angle: 16.0°

2.1.2 Orientation of the Modules

Free standing fixed system

Orientation of the modules: Azimuth 0° South

Inclination of the modules to the horizontal: 25°

2.1.3 Modules

Solar cell type: Mono crystalline silicon BiFi cells Bifaciality factor: 0.75 Make and Type: Longi, LR4-72HBD-435/ 440 M DC rated output per module: 435/ 440 W_p Number of Modules: 30,389/ 70,907 Total DC rated output power: 44,418.30 kW_p

2.1.4 Inverters

Make and Type: Huawei Technologies, SUN2000-105KTL-H1 AC rated output per inverter: 116 kVA Number of inverters: 325 Total AC rated output power: 37,700 kVA

2.1.5 Transformers

Make and type: Ulusoy electric, ONAN 20/0.8

Output per transformer: 3,150 kVA

Number of transformers: 14

Total output power: 44,100 kVA

2.1.6 Power Transformer on POC

Make and type: SGB, DOTR 60/20

Output per transformer: 55,000 kVA

2.1.7 Module Interconnection

101,296 Modules interconnected in 3,896 strings with each 26 modules (up to 12 strings per inverter).

2.2 Methodology of the Assessment

2.2.1 Component Simulation

For the simulations, the data for solar module and inverter were fed into the PVsyst v6.86 simulation program. The datasheets of the modules and inverters were provided by the client.

2.2.2 Temperature Behaviour

The simulated temperature behaviour of the modules has been based on very good rear ventilation corresponding to their free-standing mounting. The wind speed at the site is also decisive in the heat dissipation of the modules. The long-term average wind speed at the Harre site at 10 meter elevation is 5.4 m/s.

2.2.3 Manufacturer's tolerance

No manufacturing tolerances were taken into account. The following assumption applies for this assessment: All solar modules from the manufacturer Longi, LR4-72HBD-435/ 440 M will achieve at minimum their rated output of 435 and 440 W_p respectively. We recommend that, to eliminate any discrepancies, the investor and/or project developer undertake measurements of individual modules through an independent institution.

2.2.4 Light induced degradation (LID)

The LID loss is related to the quality of the wafer manufacturing with p-type crystalline silicon cells and set up to **1.0** %.

2.2.5 Mismatch

The power losses through mismatch - owing to the serial interconnection of a number of modules, each having slightly different characteristics - were set at **1.0 %**. Here horizontal string connection and data sheet power tolerance of 0 to +5 W_p were taken into account.

2.2.6 Cable losses

Due to the chosen decentralized inverter concept and according to the client information, the DC-side cable losses were set at **1.5** % at STC and on the AC-side with cable losses at **0.6** % rated power (MV line to POC included).

2.2.7 Transformer losses

The transformer losses were set at **0.1** % constant iron losses and **1.0** % rated inductive losses. The iron loss remains active and constant during the whole connecting time. Therefor night disconnect is recommended.

Additionally, the power transformer losses were set at **0.05 %** constant iron losses and **0.36 %** rated inductive losses according to transformer tests.

2.2.8 Dirt and Soiling

For solar modules erected in open-spaces, soiling cannot be ruled out and an associated reduction in the modules' output occurs. The known self-cleaning effect of glass panes by rain requires a module tilt of at least 15°, which is the case here.

Since the client intends to undertake cleaning of the modules if necessary, the losses owing to dirt and soiling have been estimated at **1.0** %.

2.2.9 Horizon shading

With respect to shading analysis, generally a distinction is made between horizon shading (caused by the surrounding topography and vegetation) and internal shading (produced by the rows of panels themselves).

Horizon shading is caused by mountain ranges in the nearby vicinity, for which it is site dependent, whereas internal shading caused by the arrays depends on the tilt angle, row spacing (pitch), module table height and the minimum sun angle at the given site, is design dependent.

The site horizon shows no elevation hence corresponding to no losses due to horizon shading.

2.2.10 Site and Shading

A site visit was not part of the assessment.

Figure 1: Location (source: Client)

The site is located in Northern Jutland in Skive Commune around 2 km away from the sea shore. The terrain is flat and even.

There are some trees around the site which will mostly be cut, one overhead line and wind turbines (75m total height) in the North/ North-East. Thus shading obstacles are taken into account in this simulation if relevant for shading.

The layout provided by the client can be found in the appendix.

To evaluate the influence of the row shading with regards to the overall energy production, the shading scene is built using the 3D- Editor from PVsyst simulation program.

Figure 2: 3-D Shading Scene in PVsyst fix tilt

Figure 3: 3-D Shading Scene in PVsyst single axis

The normal solar inclination at the site is 9.8° (December 21, Noon). According to the client the row space (pitch) for fix tilt has been chosen with 6.3 m and the shading angle corresponds to 35.6°. The row space (pitch) for single axis has been chosen with 5 m and the shading angle is only theoretically but corresponds to 16°. Backtracking will lead to lower shading losses.

Here taking into account the string interconnection, the shading accounts for **3.9 %** of losses for both systems as weighted average.

Figure 4: Module rows and shading angle fix tilt

Figure 5: Module rows and shading angle single axis

The assumptions for the losses are based on experiences in connection with the evaluation of other photovoltaic installations.

2.2.11 Meteorological Data

The irradiation data set for the site Harre is assessed based on the weather data provided by Danish Meteorological Institute (DMI). These data as well as the irradiation report Teknisk Rapport 13-09 by DMI are provided by the client and seem plausible.

DMI observes global horizontal irradiation at 28 ground measured stations in Denmark.

In the case of evaluating the expected global solar irradiation level at Harre, data from climate grid Denmark 20x20 km have been used (grid cell 20025). The data represents the period from 2001 till 2010.

DMI observes air temperature by climate grid Denmark 10x10 km.

The annual global horizontal irradiation at the site given by the examined source sum up to **1.055 kWh/m²a**.

When the photovoltaic modules are installed on a mounting, this will enhance the energy yield.

The conversion to the module plane i.e. at an angle of 25° towards 0° south gives an annual global inclined surface irradiation of **1.277 kWh/m²a** and **1,357 kWh/m²** for total system.

The annual diffuse irradiation, ambient temperature and wind speed have been assessed using Meteonorm 6.3 source.

The data set has been created with the weather simulation program Meteonorm and converted to hourly values with the help of a stochastic model.

2.2.12 Simulation program

The Simulation program used PVsyst v6.86- is a time step-increment simulation program developed by the University of Geneva. Here the individual components like the modules and inverters, their interaction with the fed in weather data and the fully shading scene are simulated on the basis of an hourly time scale over the whole year. The conversion from horizontal to tilted surfaces is in accordance with the model from Perez.

3 Assessment of the System's Technical Design

The PV system under assessment is to be operated with 325 decentral three- phase inverters from the manufacturer Huawei Technologies, which allow high plant availability for use in large solar farms.

3.1 Monitoring

The planned monitoring is evaluated positively because it provides rapid troubleshooting. Additionally the client has stated the intention to take out a maintenance contract with the inverter manufacturer for the entire period of the feedin. This will provide for rapid servicing of any problems and ensure high system availability.

3.2 Module Certification

The mono crystalline solar modules are manufactured by Longi. The bifacial modules are certified and approved to IEC 61215 and IEC 61730 by TUV Sued. Additional certificates for ammonia corrosion and salt mist corrosion are also available.

3.3 Design and Sizing

The ratio of PV generator rated power (DC power) to the inverter rated power (AC power) has been chosen at 1.18. Considering the irradiation and temperatures at the site Harre, regulation losses might occur in the inverter at this design ratio only for single axis system. These regulation losses cannot be reproduced accurately in the simulation based on hourly average values.

The working voltages of the sub-generators lie within the working voltage range of the inverters. The maximum generator open circuit voltage (at cold temperatures of below -10° C and high irradiation of 1,000 W/m²) at 1,415 V (440 W_p module class), is below the maximum system voltage of the inverter (1,500 V) and the maximum system voltage of the modules (1,500 V).

4 Forecast Energy Yield

Ŕ

The yield values shown in the table below are to be regarded as long-term averages and are for a PV plant with an availability of 100 % and a power factor of 1.

Table 1: Annual Energy Yield

Annual Energy Yield					
Simulation program	PVsyst v6.86				
Specific yield fix tilt	1,055 kWh/kW _p				
Specific yield single axis	1,312 kWh/kW _p				
Annual yield fix tilt	7,311 MWh				
Annual yield single axis	49,166 MWh				
Total annual yield	56,477 MWh				
Total Specific yield	1,272 kWh/kW _p				

4.1 Performance Ratio

The ratio of the actual amount of electricity generated to the theoretically possible yield at the site is referred to as the Performance Ratio (PR). It serves as a kind of plant efficiency figure in the evaluation of different systems at different locations. Average values are 80 %; very good systems can achieve more than 85 %.

For the system under assessment a PR of **91.2** % is calculated. Here the bifacial effect with gain on front and back side is included (weighted average).

4.2 Monthly Distribution of yield (P50 values)

Table 2: Monthly distribution (P50) fix tilt

	GlobInc	T Array	E_Grid	Specific Yield	PR
Month	[kWh/m²]	[°C]	[MWh]	[kWh/kW _p /day]	[%]
January	30	5.0	106	0.49	50.2%
February	54	6.4	239	1.23	63.8%
March	115	11.6	603	2.80	75.5%
April	145	16.9	909	4.37	90.6%
May	180	20.7	1,113	5.18	89.3%
June	182	23.1	1,134	5.45	89.7%
July	176	25.8	1,085	5.05	88.8%
August	151	25.9	925	4.30	88.1%
September	114	22.2	658	3.17	83.0%
October	73	15.9	340	1.58	67.4%
November	32	9.6	124	0.60	56.7%
December	24	5.7	76	0.35	45.9%
Year	1,277	18.0	7,311	2.89	82.6%

Table 3: Monthl	y distribution	(P50) single axis
-----------------	----------------	-------------------

				-	
	GlobInc	T Array	E_Grid	Specific Yield	PR
Month	[kWh/m²]	[°C]	[MWh]	[kWh/kW _p /day]	[%]
January	20	4.8	651	0.56	86.7%
February	44	6.4	1,540	1.47	94.4%
March	113	11.8	4,074	3.51	96.3%
April	163	18.0	5,803	5.16	95.3%
May	223	23.0	7,712	6.64	92.3%
June	236	25.8	8,178	7.27	92.3%
July	222	28.0	7,616	6.55	91.7%
August	172	27.0	5,944	5.12	92.4%
September	121	22.7	4,209	3.74	92.9%
October	64	15.8	2,239	1.93	93.0%
November	23	9.2	748	0.67	88.8%
December	15	5.5	451	0.39	83.2%
Year	1,413	19.1	49,166	3.59	92.8%

4.3 Uncertainty Analysis

Table 4: Loss factors and uncertainty analysis total system

	Loss/Gain	Specific Yield	Unit	PR	Uncertainty
			3		
Global horizontal irradiation, for collectors		220174.1	m²		
Horizontal global irradiation	24.000	1054.9	kWh/m²	1000	3.0%
Global incident in coll. plane	31.90%	1394.0	kWh/m²	100%	2.5%
Global incident below threshold	-0.07%	1390.3	kWh/m²	99.9%	0.1%
Near Shadings: irradiance loss	-3.95%	1336.2	kWh/m²	96.0%	0.5%
IAM factor on global	-2.08%	1308.5	kWh/m²	94.0%	0.5%
Solling loss factor Ground reflection on front side	-1.00%	1295.4	kWh/m² kWh/m²	93.0%	0.5%
			,		
Bifacial: Global horizontal irrad. on reference ref	lexive ground	484777.6	m²		
Global incident on ground		463.3	kWh/m²		
Ground reflection loss (albedo)	-70.00%	139.0	kWh/m²		
Irradiation on the rear side, renormalized to colle	ectors	220174.1	m²		
View Factor for rear side	-67.04%	99.7	kWh/m²		
Sky diffuse on the rear side	25.55%	125.9	kWh/m²		
Beam effective on the rear side	0.36%	126.1	kWh/m²		
Shadings loss on rear side	-5.00%	119.9	kWh/m²		
Global Irradiance on rear side		119.9	kWh/m²		
Useable irradiance on the rear side - Bifacial fact	75.00%	89.9	kWh/m²		
Effective irradiation on collectors		1302.7	kWh/m²		
Global effective energy		1392.6	kWh/m²	99.9%	3.0%
on an area of		220174.1	, m2		
Total energy on collectors		306822.9	MWh		
STC efficiency		20.19	%		
Arroylesses					
Array nominal anargy at STC officiency		1200.0	k\Wh/k\W	00.0%	
Array normal energy at STC enricency	1.03%	1360.0	kWh/kW	99.0%	0.5%
PV loss due to tradiance level	-1.03%	1365.8		98.0%	0.5%
PV loss due to temperature	-0.57%	1358.0		97.4%	0.5%
Shadings: Electrical Loss acc. to strings	-0.63%	1349.4		96.8%	0.5%
LID - Light induced degradation	-1.00%	1335.9	KVVN/KVV _p	95.8%	0.5%
Module array mismatch loss	-1.00%	1322.5	KWN/KWp	94.9%	0.5%
Mismatch for back irradiance	-0.85%	1311.2	kWh/kW _p	94.1%	1.0%
Ohmic wiring loss	-0.86%	1300.0	kWh/kW _p	93.3%	1.0%
Array virtual energy at MPP					
System losses					
Inverter Loss during operation (efficiency)	-1.18%	1300.0	kWh/kW _p	93.3%	1.0%
Inverter Loss over nominal inv. power	-0.22%	1297.1	kWh/kW _p	93.1%	
Inverter Loss due to max. input current		1297.1	kWh/kWp	93.1%	
Inverter Loss over nominal inv. voltage		1297.1	kWh/kW _p	93.1%	
Inverter Loss due to power threshold	-0.01%	1297.1	kWh/kW _p	93.0%	
Inverter Loss due to voltage threshold		1297.1	kWh/kW _p	93.0%	
Night consumption	-0.01%	1297.0	kWh/kW	93.0%	
Available Energy at Inverter Output	0.0170	1297.0	kWh/kW _p	93.0%	
Losses after the inverter	0.240	1000.0	1.1.0/1- /1.1.0/	00.70	0.54
	-0.31%	1292.9	KVVN/KW _p	92.7%	0.5%
External transfo loss	-1.62%	1272.0	кWn/kW _p	91.2%	0.5%
Energy injected into grid		1272.0	kWh/kW₀	91.2%	5.5%

4.3.1 Margin of variation

Assuming a normal distribution of the expected yields, an annual specific yield between **1,203 kWh/kW**_p and **1,341 kWh/kW**_p will be achieved with a probability of 68.3 % (one standard deviation) - i.e. **1,272 kWh/kW**_p **± 5.5%** (weighted average).

4.3.2 Probability of excess production

There is a probability of 90.0 % that the annual yield will exceed **1,183 kWh/kW**_P (P90 weighted average value).

There is a probability of 75.0 % that the annual yield will exceed **1,225 kWh/kW**_P (P75 weighted average value).

4.3.3 Variations in annual yield

The annual yield of the planned photovoltaic system could, however, deviate from the forecast given here. The following factors are mainly responsible for this:

Variations in the solar irradiation

Typical meteorological deviations for individual years against the long-term mean can be up to 8 %. In 2003, for example, the solar irradiation in parts of Europe was approximately 20 % above the long-term mean.

Reductions in performance

The actual generator output does not always accord with the sum of the module outputs according to their rating plates. In our yield forecast, we have not taken any output reduction into account.

Power Factor

In order to maintain grid stability some utilities require the supply of reactive power. This is giving by the power factor cos phi which describes the ratio of active power over apparent power. With power factor unequal 1 the active power is reduced thus the plant yield decreases.

Impact of Shading

The behaviour of photovoltaic systems is sensitive to shading. Even the (partial) shading of just a single cell is equivalent to shading all the in-series connected cells of the module concerned. As a result the output performance, even for small shadows such as those caused by overhead lines, lightning conductors, guy wires, antennas or tree branches, can result in output reductions.

Impact of Soiling

For free-standing solar panels, soiling and its associated output reduction cannot be ruled out. The known self-cleaning effect of glass panes by rain requires a minimum module slope of 15 °, which is the case here.

Inverter malfunction

At this site, the largest part of the annual solar energy yield is generated in the time from spring to autumn and only a small portion in the winter months. Inverter malfunctions - especially in the months of highest irradiation - may therefore result in significant yield losses. A monitoring system allows for quick trouble shooting and repair.

Bifacial factor

The bifacial factor is given my module manufacturer and mainly dependent on ground albedo.

5 Glossary

Albedo

潦

Describes the ground reflection of the surroundings of a photovoltaic system. This reflected radiation is added to the irradiation present. If the surroundings are covered with snow, the albedo can reach 95 %. On average the reflection amounts to 20 %.

Azimuth

The azimuth angle gives the orientation of the PV generator. This has the value 0° for an orientation to the South (-90° East, +90° West).

Degradation

Degradation is used to describe the ageing processes in the module, which reduce its performance. The extent of degradation is dependent on the cell materials used; for crystalline modules it has a value of, for example, around 0.25 % annually.

Generator

Several interconnected modules, including the necessary cabling and the mounting assemblies, are described as a generator.

Global irradiation

This describes the total solar radiation that strikes a horizontal surface on earth and is measured in kilowatt-hours per square meter (kWh/m^2a) for a specific period (generally yearly).

Inverter

Solar modules generate direct current (DC). If this is to be fed into the mains electricity grid, the direct current must be converted by an inverter into alternating current (AC). Depending on the manufacturer and type, modern inverters have many more functions than just generating alternating current from direct current. These include:

- Operating the modules/string/generator at their maximum power point (MPP tracking)
- Converting the generator voltage up to grid level (transformation)
- Safety devices for monitoring the grid connection
- ► Feed-in management
- Grid support functions
- Production of reactive power

Irradiation assessment

These are not to be confused with yield reports. Weather services, such as, in Germany, the DWD create an irradiation assessment for a particular location, which depict the periodic progression of solar radiation. Irradiation assessments serve as a basis for yield reports.

Light induced degradation (LID)

LID describes a loss of performances arising in the very first hours of exposure to the sun, with crystalline modules (p-type) based on crystalline silicon cells fabricated on Czochralski (CZ) wafers until it stabilizes.

The LID loss is related to the quality of the wafer manufacturing and may be up to 3%.

Low light behaviour

The low light behaviour defines performances of the module under different irradiations. Usually the relative efficiencies at 200 W/m² and 25°C, with respect to the STC efficiency are taking into account.

As per the module datasheet, the low light behaviour of the module at 200 W/m² ranges between 1 and 5 % efficiency reduction.

Maintenance

In general, PV systems are very low maintenance because the generator responsible for the electricity generation contains no moving parts. However, it is recommended that a maintenance contract is taken out for the undertaking of module cleaning and checking all components so as to avoid outages.

Mismatch

Mismatch is a reduction in the output of a string or entire generator as a result of factory production tolerances. Here, the worst module within a series connection reduces the output of the entire string to its output. Properly pre-selected modules and verification on site can almost completely eliminate mismatch.

Nowadays typical values with plus sorted modules are below 1 % of the system output.

Module

A photovoltaic module generates electricity from sunlight and consists of a preassembled unit of solar cells connected together under factory conditions. A module is defined according to its nominal power output, current and voltage with accordingly approved tolerances. In the factory, the solar cells are 'encapsulated' in a solar module to protect them from the effects of weather, air and moisture. Several modules together form a solar generator.

Nominal or rated output

This is a module's peak output in kilowatt peak (kW_p) determined under standard test conditions (STC) in the laboratory. Tolerances are permissible to an extent defined by the manufacturer (e.g. 0/+ 5 W_p). Nowadays one finds mostly plus sorted modules.

To simplify comparison it is usual to relate parameters such as system costs and system yields to the nominal output. The total nominal output of a generator/power plant is the sum of the installed module outputs.

Performance Ratio

The "Performance Ratio" (PR) is an international measure for the efficiency of a complete system in operation. The PR can be described as the proportion of usable energy (at the inverter output) to the nominal value of energy which may be produced, arising from module area, module efficiency (according to data sheet) and the irradiation on the inclined module plane. It therefore allows for a comparison of differently designed installations, which is largely independent of the specific irradiation conditions for location and year. Values over 85 % will be achieved in very good facilities, which comprise the best selected components combined with "perfect" system engineering at a minimally shaded location.

Power Factor

In order to maintain grid stability some utilities require the supply of reactive power (kVAr). This is giving by the power factor cos phi which describes the ratio of active power (kW) over apparent power (kVA). With power factor equally 1 the active power is completely feed into the grid.

Usual power factors for utility scale PV plants might vary between -0.9 (inductive) and +0.9 (capacitive). Thus the active power and the energy feed into the grid are reduced.

Reactive power control

To facilitate higher levels of distributed PV penetration, utility scale PV plants need to participate in voltage regulation. Thus reactive power can be generated as a means of raising voltage levels or absorbed as a means of lowering voltage levels.

Solar Cells

Manufactured from silicon wafers (slices of silicon blocks) or thin film, this smallest electricity-producing unit consists of conducting paths applied to the substrate. Several interconnected solar cells build a solar module. Solar cells produce electricity by utilizing the photovoltaic effect to convert light falling on them.

Solar inclination

The lowest altitude of the sun (equivalent to the lowest solar elevation angle) at noon on the day of the winter solstice (Dec 21st in the northern hemisphere) is generally used as a basis for the shading calculation. This calculation basis is an economic compromise, and does not represent complete freedom of shading, as the sun occupies low positions morning and evening.

Theft protection

Especially in the case of open space facilities some means of theft protection for the modules is usually advisable or will be required by the insurers. Whether a fence is sufficient or the provision of additional safety measures must be determined on a case by case basis. The solar panels should be laid out sufficiently far from a fence to avoid shading.

6 List of figures

Figure 1: Location (source: Client)	9
Figure 2: 3-D Shading Scene in PVsyst	10
Figure 3: Module rows and shading angle fix tilt	11
Figure 4: Module rows and shading angle single axis	11

7 List of tables

Table 1: Annual Energy Yield	14
Table 2: Monthly distribution (P50) fix tilt	15
Table 3: Monthly distribution (P50) single axis	16
Table 4: Loss factors and uncertainty analysis total system	17

A Appendix

Meteorological Data Summary based on DMI source 2001-2010

Interval beginning	GlobHor	DiffHor	T_Amb	WindVel
	kWh/m².mth	kWh/m².mth	°C	m/s
January	14.2	8.20	1.6	6.3
February	30.8	14.70	1.2	5.7
March	79.4	29.60	2.9	5.5
April	120.8	52.50	7.3	5.0
May	167.8	72.50	10.8	5.2
June	177.2	77.40	13.9	5.3
July	166.9	76.30	16.8	4.7
August	132.5	67.70	16.9	4.9
September	88.6	40.20	13.7	5.5
October	48.1	25.80	9.4	5.5
November	17.8	11.50	5.8	6.0
December	10.8	7.10	2.5	5.5
Year	1054.9	483.50	8.6	5.4

meteo for Harre -DK - Synthetically Generated Data

DMI Grid cell 20x20km

Layout (Source: Client):

Datasheets:

PV Modul

Room 801, Tower 3, Lujiazul Financial Pizza, No.826 Century Avenae, Pudong Shanghai, 200120, Chine Tat: +86-21-60152606 [J-mail: module@longl-silicon.com | Facabook: www.facabook.com/LOWGI Solar

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LDHGI have the sole right to make such modification at anytime without further notice; Demanding party shall request for the latest datasheet for such as contract need, and make it is consisting and binding part of lawed documentation duly signed by both particle.

20191205-Draft

LR4-72HBD 435~455 ating Pa Cell Orientation: 144 (6x24) Operational Temperature: -40 °C ~ +85 °C Junction Base IP68, three diodes Power Output Tolerance: 0 ~ +5 W D Output Cable: 4mm², 300mm in length, Voc and lsc "blerance: ±3% length can be customized Maximum System Voltage: DC1500V (IEC&UL) Glass: Dual glass Maximum Series Fuse Rating: 25A 3888 2.0mm coated tempered glass Nominal Operating Cell Temperature: 45±2 ℃ 1100 Frame: Anodized aluminum alloy frame Safety Class: Class II Weight: 28.0kg Fire Rating: UL type 3 Dimension: 2094x1038x35mm Bifaciality: Glazing ≥70% 10 Packaging: 30pcs per pallet **Electrical Characteristics** Model Number LR4-72HBD-435M LR4-72HBD-440M LR4-72HBD-445M LR4-72HBD-450M LR4-72HBD-455M Testing Condition STC NOCT STC NOCT STC NOCT STC NOCT NOCT STC 435 323.5 Maximum Power (Pmax/W) 440 327.2 445 330.9 450 334.6 455 338.3 Open Circuit Voltage (Voc/V) 49.1 45.7 49.2 45.8 49.4 45.0 49.6 46.2 49.8 46.4 Short Circuit Current (Isc/A) 11.36 9.20 11.45 9.27 11.52 9.32 11.58 9.38 11.65 9.43 Voltage at Maximum Power (Vmp/V) 40.8 37.9 41.0 38.1 41.2 38.3 41.4 38.4 41.5 38.6 10.66 8.54 10.73 8.60 10.80 8.65 10.93 8.76 10.87 8.70 Current at Maximum Power (Imp/A) Module Efficiency(%) 20.0 20.2 205 20.7 20.9 STC (Standard Testing Conditions): Irradiance 1000W/m², Cell Temperature 25°C, Spectra at AM1.5 NOCT (Nominal Operating Cell Temperature): Irradiance 800W/m², Ambient Temperature 20 °C, Spectra at AM1.5, Wind at 1m/S Electrical characteristics with different rear side power gain (reference to 445W front) Isc /A Pmax /W Voc/V Vmp/V Imp /A Pmax gain 12.09 467 49.4 41.2 11.34 5% 490 49.4 12.67 41.2 11.88 10% 15% 12.42 512 49.5 13.24 41.3 534 49.5 13.82 41.3 12.96 20% 556 49.5 14.40 41.3 13.50 25% nical Loading Temperature Ratings (STC) Temperature Coefficient of Isc +0.060%/℃ Front Side Maximum Static Loading 5400Pa Temperature Coefficient of Voc -0.300%/°C Rear Side Maximum Static Loading 2400Pa Temperature Coefficient of Pmax -0.370%/°C Hallstone Test 25mm Hailstone at the speed of 23m/s I-V Curve Current-Voltage Curve (LR4-72HBD-445M) Power-Voltage Curve (LR4-72HBD-445M) nt-Voltage Curve (LR4-72HBD-445M) Cum POWER (N) Cell Ten Cell Ten LONG Room 801, Tower 3, Lujiazui Financial Piaza, No.826 Century Avenue, Pudong Shanghai, 200120, China Tel: +85-21-80162606 E-mail: module@longi-silicon.com Facebook: www.facebook.com/LONGi Solar

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LONGi have the sole right to make such modification at anytime without further notice: Demanding party shall request for the latest datasheet for such as contract need, and make it a consisting and binding part of lawful documentation duly signed by both parties.

20191205-Draft

10 Technical Data

Inverter

Item	SUN2000-90K TL-H0	SUN2000-90K TL-H1	SUN2000-90K TL-H2	SUN2000-95K TL-INH0	SUN2000-95F TL-INH1		
x H x D)							
Net weight	76±1 kg	76±1 kg	79±1 kg	76±1 kg	79±1 kg		
Operating temperature	-25°C to +60°C		-				
Cooling mode	Natural convection	n					
Highest operating altitude	4000 m						
Operating relative humidity	0%-100% RH						
Input terminal	Amphenol UTX						
Output terminal	Cable gland + OT	/DT terminal					
Overvoltage level	II (DC)/III (AC)						
IP rating	IP65						
Protection level	I						
Pollution degree	ш						

SUN2000-(90KTL, 95KTL, 100KTL, 105KTL) Series User Manual

10.2 SUN2000-(100KTL, 105KTL) Series Technical Data

Efficiency

Item	SUN2000-100KT L-H0	SUN2000-100KT L-H1	SUN2000-100KT L-H2	SUN2000-105KT L-H1
Maximum efficiency	99.00%			
Chinese efficiency	98.55%	N/A	98.55%	N/A
EU efficiency	98.80%	98.80%	98.80%	98.80%

Input

Item	SUN2000-100KTL	SUN2000-100KTL	SUN2000-100KTL	SUN2000-105KTL
	-H0	-H1	-H2	-H1
Maximum input	112,200 W	10 7 ,100 W	112,200 W	118,400 W

Issue 05 (2018-11-30)

Copyright © Huawei Technologies Co., Ltd.

10 Technical Data

SUN2000-(90KTL, User Manual	95KTL,	100KTL,	105KTL) Series	

Item	SUN2000-100KTL -H0	SUN2000-100KTL -H1	SUN2000-100KTL -H2	SUN2000-105KTL -H1				
power								
Maximum input voltage	1500 V	1500 V	1500 V	1500 V				
Maximum input current (per MPPT)	22 A	22 A	25 A	25 A				
Maximum short-circuit current (per MPPT)	33 A							
Maximum backfeed current to the PV array	0 A	0 A						
Lowest operating/startup voltage	600/650 V							
Operating voltage range	600–1500 V							
Full-load MPPT voltage range	880–1300 V	880–1300 V						
Rated input voltage	1080 V	1080 V						
Number of inputs	12	12						
Number of MPP trackers	6							

Output

Item	SUN2000-100KT L-H0	SUN2000-100KT L-H1	SUN2000-100KT L-H2	SUN2000-105KTL -H1				
Rated active power	100 kW	100 kW	100 kW	105 kW				
Maximum apparent power	110 kVA	105 kVA	110 kVA	116 kVA				
Maximum active power $(\cos \varphi = 1)$	110 kW	105 kW	110 kW	116 kW				
Rated output voltage	800 V AC, 3W+PE		-	-				
Rated output current	72.2 A	72.2 A	72.2 A	75.8 A				
Adapted power grid frequency	50 Hz/60 Hz	50 Hz/60 Hz						
Maximum output	80.2 A	80.2 A	80.2 A	84.6 A				

Issue 05 (2018-11-30)

Copyright C Huawei Technologies Co., Ltd.

SUN2000-(90KTL, 95KTL, 100KTL, 105KTL) Series User Manual

10 Technical Data

Item	SUN2000-100KT L-H0 SUN2000-100KT L-H1		SUN2000-100KT L-H2	SUN2000-105KTL -H1			
current							
Power factor	0.8 leading 0.8 lagging						
Maximum total harmonic distortion (rated power)	< 3%						

Protection

Item	SUN2000-100KT L-H0	SUN2000-100KT L-H1	SUN2000-100KT L-H2	SUN2000-105KTL -H1				
Input DC switch	Supported							
Anti-islanding protection	Supported							
Output overcurrent protection	Supported	Supported						
Input reverse connection protection	Supported	Supported						
PV string fault detection	Supported							
DC surge protection	Type II							
AC surge protection	Type II							
Insulation resistance detection	Supported	Supported						
Residual current monitoring	Supported							

Display and Communication

Item	SUN2000-100KT L-H0	SUN2000-100KT L-H1	SUN2000-100KT L-H2	SUN2000-105KTL -H1			
Display	LED, Bluetooth module + app, USB data cable + app						
R\$485	Supported	Supported					
PLC	Supported						

Issue 05 (2018-11-30)

Copyright © Huawei Technologies Co., Ltd.

10 Technical Data

SUN2000-(90KTL, 95KTL, 100KTL, 105KTL) Series User Manual

Common Parameters

Item	SUN2000-100KT L-H0	SUN2000-100KT L-H1	SUN2000-100KT L-H2	SUN2000-105KTL -H1			
Dimensions (W x H x D)	1075 mm x 605 mm x	x 310 mm	-				
Net weight	76±1 kg	76±1 kg	79±1 kg	79±1 kg			
Operating temperature	-25°C to +60°C						
Cooling mode	Natural convection						
Highest operating altitude	4000 m	4000 m					
Operating relative humidity	0%-100% RH						
Input terminal	Amphenol UTX						
Output terminal	Cable gland + OT/DT terminal	 With the terminal clamp: cable gland + terminal clamp With the OT/DT terminal: cable gland + OT/DT terminal 	Cable gland + OT/DT terminal	Cable gland + OT/DT terminal			
Overvoltage level	II (DC)/III (AC)						
IP rating	IP65						
Protection level	I						
Pollution degree	ш						

Issue 05 (2018-11-30)

Copyright © Huawei Technologies Co., Ltd.

PVsyst Simulation Results

SOLARP	PANIS	V6.86 Sol	arpraxis (Germany) 2	8/02/20 Page 1/5
JOLAKP	engineering		info@solarpraxis.co	m
Grid-	Connected System	n: Simula	tion parameters	
Project : Harr	e			
Geographical Site	Нагте -DK		Country	Denmark
Situation Time defined as	Latitude Legal Time Albedo	56.72° N Time zone 0.20	Longitude UT+1 Altitude	8.93° E 30 m
Meteo data:	Harre -DK	DMI 2001-2	2010 - Synthetic	
Simulation variant : Fix t	lit			
	Simulation date	28/02/20 10)h04	
Simulation parameters	System type	Sheds on g	ground	
Collector Plane Orientation	Tilt	25°	Azimuth	0°
Sheds configuration Shading limit angle	Nb. of sheds Sheds spacing Limit profile angle	294 6.30 m 35.6° G	Identical arrays Collector width Fround cov. Ratio (GCR)	4.21 m 66.8 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	According to strings		Electrical effect	100 %
Bifacial system User's needs :	Model Sheds spacing Limit profile angle Ground albedo Module bifaciality factor Module transparency Unlimited load (grid)	Unlimited s 6.30 m 35.6* 30.0 % 75 % 0.0 %	heds, 2D calculation Sheds width GCR Height above ground Rear shading factor Rear mismatch loss	4.21 m 66.8 % 0.50 m 5.0 % 10.0 %
PV Arrays Characteristics (2)	kinds of array defined)			
Sub-array "Fix tilt 435" Custom parameters definition Number of PV modules Total number of PV modules Array global power Array operating characteristics (5	Si-mono Model Manufacturer In series Nb. modules Nominal (STC) 0°C) U mpp	LR4-72 HB Longi Solar 26 modules 4732 2058 kWp 947 V	D 435 M- fk In parallel Unit Nom. Power At operating cond. Impp	182 strings 435 Wp 1868 kWp (50°C) 1972 A
Sub-array "Fix tilt 440" Custom parameters definition Number of PV modules Total number of PV modules Array global power Array operating characteristics (5 Total Arrays global power	Si-mono Model Manufacturer In series Nb. modules Nominal (STC) O*C) U mpp Nominal (STC) Module area	LR4-72 HB Longi Solar 26 modules 11076 4873 kWp 950 V 6932 kWp 34360 m ² SUN2000-1	D 440 M- fk In parallel Unit Nom. Power At operating cond. Impp Total Cell area 05KTL-H1-fk	426 strings 440 Wp 4424 kWp (50°C) 4656 A 15808 modules 31368 m ²
Custom parameters definition Characteristics	Manufacturer Operating Voltage	Huawei Teo 600-1500 V	chnologies Unit Nom. Power Max. power (=>25*C)	105 kWac 116 kWac

PVayat Licensed to Solarpraces (Germany)

Votice Votice (Votice) Info@solarprexis.com Info@solarprexis.com Info@solarprexis.com Sub-array "Fix tilt 435" Nb. of Inverters 15 units Total Power 1675 KWac Sub-array "Fix tilt 440" Nb. of Inverters 15 units Total Power 1675 KWac Prom ratio 1.31 Total Power 1575 KWac Prom ratio 1.31 Sub-array "Fix tilt 440" Nb. of Inverters 51 Total Power 3780 KWac Pom ratio Loss Fraction 1.9% Xint Uv (min) 0.00 Wint% / m/k Viring Ohnic Loss Array/12 3.4 mOhn Loss Fraction 1.9% Xint UD - Light Induced Degradation Array/12 3.4 mOhn Loss Fraction 1.9% at STC Module Oually Loss Loss Fraction 1.0 % at STC Module Mismatch Losses Loss Fraction 1.0 % at STC Indefence effect (WM): User defined profile Everter votage 800 Vac tri Loss Fraction 0.6 % at STC A view loss inverter to transformer Inverter votage 800 Vac tri Loss Fraction 0.6 % at STC System loss factore				PVS	TRVS	V6 86	Solarors	vie (Corm	anv) 28	102/20	Page 2/5
Indextragenetics Grid-Connected System: Simulation parameters Sub-array "Fix tilt 435" Nb. of inverters 15 units Total Power 1575 KWac Sub-array "Fix tilt 440" Nb. of inverters 36 units Total Power 3780 KWac Total Nb. of inverters 36 units Total Power 3780 KWac PV Array loss factors Array Soling Losses Loss Fraction 1.0 % Ming Onnic Loss Array#1 8.0 mOhm Loss Fraction 1.5 % at STC LID - Light induced Degradation Module Quality Loss Loss Fraction 1.5 % at STC Module Mismatch Losses Loss Fraction 1.0 % Loss Fraction 1.0 % at MPP Indefence effect (MM): User defined profile Exerction 1.0 % at MPP Loss Fraction 1.0 % at STC A ray#2 3.4 mOhm Loss Fraction 1.0 % at STC Loss Fraction 1.0 % at STC LiD - Light induced Degradation Module Mismatch Losses Loss Fraction 1.0 % at STC Indefence effect (MM): User defined profile Exerction 1.0 % at STC Loss Fraction 0.6 % at STC <td>-O-SOI</td> <td>LARP</td> <td>RAX</td> <td></td> <td>101</td> <td>V0.00</td> <td>info</td> <td>@solarpra</td> <td>ariy) 20</td> <td>1</td> <td>Fuge 2/5</td>	-O-SOI	LARP	RAX		101	V0.00	info	@solarpra	ariy) 20	1	Fuge 2/5
Sub-array "Fix tilt 435" Nb. of inverters 15 units Total Power 1575 KWac Sub-array "Fix tilt 440" Nb. of inverters 36 units Total Power 3750 KWac Total Nb. of inverters 36 units Total Power 3750 KWac Total Nb. of inverters 36 units Total Power 3750 KWac PV Array loss factors Array 50ing Losses Loss Fraction 1.0 % U (wind) 0.00 WmK1 mix Ming Ohmic Loss Array 48 00 mOhm Loss Fraction 1.5 % at STC Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global Loss Fraction 1.0 % Loss Fraction 1.0 % Module Quality Loss Array 42 3.4 mOhm Loss Fraction 1.0 % Loss Fraction 1.0 % Module Quality Loss Array 42 3.4 mOhm Loss Fraction 1.0 % Module Quality Loss Loss Fraction 0.0 % Quality Loss Fraction 1.0 %			engin	leering				Growpie			
Sub-array "Fix Sit 435" Nb. of Inverters 15 units Total Power 15 Wate: Phom ratio Sub-array "Fix Sit 440" Nb. of Inverters 36 units Total Power 3780 Wate: Phom ratio Total Nb. of Inverters 51 Total Power 3785 KWate: Phom ratio PV Array loss factors Array Soling Losses Loss Fraction 1.0 % U (wind) 0.0 Wint // m/s U (wind) Array Soling Losses Loss Fraction 1.5 % at STC Loss Fraction 1.5 % at STC Loss Fraction LID - Light Induced Degradation Module Quality Loss Array#2 8.0 mOhm Loss Fraction 1.5 % at STC Loss Fraction Module Quality Loss Module Caulity Loss Inverter voltage 800 Vac tri Wres: 32000.0 mm 256 m Loss Fraction 0.6 % at STC Loss Fraction System loss factors Ac wire loss inverter to transformer Inverter voltage 800 Vac tri Wres: 32000.0 mm 256 m Loss Fraction 0.6 % at STC Loss Fraction System loss factors External transformer Inverter voltage 800 Vac tri Wres: 32000.0 mm 256 m Loss Fraction 0.6 % at STC Loss Fraction Loss Fraction 1.2 % at STC Inverter voltage 1.08 mOhm Loss Fraction 0.1 % at STC <td></td> <td>Grid</td> <td>-Conne</td> <td>cted Sys</td> <td>sten</td> <td>n: Sir</td> <td>nulation</td> <td>n parame</td> <td>eters</td> <td></td> <td></td>		Grid	-Conne	cted Sys	sten	n: Sir	nulation	n parame	eters		
Sub-array "Fix tilt 440" Nb. of Inverters 36 units Total Power 3720 kWac Total Nb. of Inverters 51 Total Power 3730 kWac PV Array loss factors Array Soling Loses Loss Fraction 1.0 % Thermal Loss factor Uc (const) 29.0 W/m*K Uc (with the state of the state	Sub-array "Fix tilt	435"		Nb. of inve	rters	15 un	its	Total	Power	1575 k	Nac
Total Nb. of inverters 51 Total Power 5355 kWac PV Array loss factors Array Solling Losses Uc (const) 29.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wring Ohmic Loss Array 31 8.0 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Global Loss Fraction 1.5 % at STC LD - Light Induced Degradation Global Loss Fraction 1.0 % Module Quality Loss Loss Fraction 1.0 % at MPP Indence effect (IAM): User defined profile Loss Fraction 1.0 % at MPP Indence setter (IAM): User defined profile Loss Fraction 0.0 % at MPP System loss factore Move Write: 320000.0 mP 395 mp Loss Fraction 0.1 % at STC AC wire loss inverter to transformer Inverter voltage 800 Vac tri Loss Fraction 0.1 % at STC Eternal transformer Iron loss (24H connexton) 10282 W Loss Fraction 0.6 % at STC Eternal transformer Iron loss (24H connexton) 10282 W Loss Fraction 1.2 % at STC	Sub-array "Fix tilt	440"		Nb. of inve	rters	36 un	lits	Total Pno	Power m ratio	3780 k ¹	Wac
PV Array loss factors Array Solling Losses Loss Fraction 1.0 % Thermal Loss factor Uc (const) 20.0 W/mK Loss Fraction 1.0 % Wining Ohmic Loss Array 32 34 mOhm Loss Fraction 1.5 % at STC LiD - Light Induced Degradation Global Loss Fraction 1.5 % at STC Wide Quality Loss Loss Fraction 1.0 % Loss Fraction 1.0 % Module Quality Loss Loss Fraction 1.0 % Loss Fraction 1.0 % Module Quality Loss Loss Fraction 1.0 % at STC Loss Fraction 1.0 % Incidence effect (IAM): User defined profile Loss Fraction 1.0 % at MPP Active Loss inverter to transfor Inverter voltage 800 Vac tri Xerie Loss inverter to transfor Inverter voltage 800 Vac tri Wries: 3x20000.0 mm² 595 m Loss Fraction 0.6 % at STC External transformer Tron loss (241 connexion) 10282 W Loss Fraction 1.2 % at STC Resistitive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	Total			Nb. of inve	rters	51		Total	Power	5355 k	Nac
Array Soling Losses Loss Fraction 10.9 % Thermal Loss factor Uc (const) 29.0 W/m ² K Loss Fraction 10.9 % Wiring Ohmic Loss Array#2 3.4 mOhm Loss Fraction 15.9 % at STC Global Global Loss Fraction 15.9 % at STC LID - Light Induced Degradation Loss Fraction 15.9 % at STC Loss Fraction 10.9 % Module Quality Loss Module Mismatch Losses Loss Fraction 10.9 % Incidence affect (IVM): User defined profile Loss Fraction 10.9 % at MPP Incidence affect (IVM): User defined profile Loss Fraction 0.0 % System loss factors Array#2 800 Vac tri AC wire loss inverter to transfor Inverter voltage 800 Vac tri Wires: 3x20000.0 mm ² 596 m Loss Fraction 0.1.6 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 0.1.9 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	PV Array loss fact	ors									
Inermal Loss tactor Uc (cons) 29.0 W/mK Uc (wink) Uc (wink) 0.0 W/mK / ms Wiring Ohmic Loss Array#2 3.4 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global Loss Fraction 1.5 % at STC Module Quality Loss Loss Fraction 1.6 % at STC Module Quality Loss Loss Fraction 0.0 % Module Quality Loss Loss Fraction 0.0 % at MPP Incidence effect (IAM): User defined profile Loss Fraction 0.0 % at MPP Incidence sets 1.000 0.995 0.952 0.936 0.903 0.851 0.754 0.000 System loss factors AC wire loss inverter to transfo Inverter voltage 800 Vac tri Loss Fraction 0.5 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 0.1 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	Array Soiling Losse	5						Loss F	raction	1.0 %	
Array Array 2.4 mOhm Loss Fraction 1.5 % at STC Global Loss Fraction 1.5 % at STC Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global Loss Fraction 1.0 % at STC Module Quality Loss Loss Fraction 0.0 % Loss Fraction 0.0 % Module Quality Loss Loss Fraction 1.0 % at MPP Incidence effact (IAM): User defined profile Loss Fraction 1.0 % at MPP System loss factors Loss Fraction 0.6 % at STC AC wire loss inverter to transfo Inverter voltage 800 Vac tri Wires: 3x20000.0 mn² 596 m Loss Fraction 0.6 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 0.1 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	Thermal Loss facto	r		Uc (cc	onst)	29.0	W/m ⁴ K	Uv Loop E	(wind)	0.0 W/r	n°K/m/s
Giobal Loss Fraction 1.5 % at STC LID - Light Induced Degradation Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 0.0 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Incidence affect (MN): User defined profile Image: Construction 1.0 % at MPP System loss factors AC wire loss inverter to transfo Image: Construction 1.5 % at STC AC wire loss inverter to transfo Inverter voltage 800 Vac tri Loss Fraction 0.6 % at STC External transformer Wires: 3/20000.0 mm 2 596 m Loss Fraction 1.2 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 1.2 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	wining Onmic Loss			Ana	ay#1	3.4 m	Ohm	Loss F	raction	1.5 % 8	tSTC
LD - Light Induced begradation Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 1.0 % Loss Fraction 1.0 % Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 1.0 % Loss Fraction 1.0 % Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 1.0 % Module Mismatch Losses Loss Fraction 1.0 % Module Mismatch Losses Module Mismatch Losses Module Mismatch Losses Mismatch Losses Module Mismatch Losses Mismatch Losses Module Mismatch Losses Mismatch Losses Mismatch Losses Mismatch Losses Mismatch Losses Mismatch Losses				G	obal			Loss F	raction	1.5% a	t STC
Module Mismatch Losses Loss Fraction 1.0 % at MPP Incidence effect (IAM): User defined profile <u>25³</u> <u>45⁹</u> <u>50⁹</u> <u>75⁹</u>	LID - Light Induced Module Quality Los	Degradation s						Loss F	raction	1.0 %	
Incidence effect (IAM): User defined profile Incidence effect (IAM): User defined profile Image: transformer incidence of the state of	Module Mismatch L	OSSES						Loss F	raction	1.0 % a	at MPP
0° 25° 45° 60° 65° 70° 75° 80° 90° 1.000 1.000 0.995 0.962 0.936 0.903 0.851 0.754 0.000 System loss factors AC wire loss inverter to transfo Inverter voltage 800 Vac tri Wires: 3x20000.0 mm² 596 m Loss Fraction 0.6 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 0.1 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	Incidence effect (IA	M): User def	ined profile		_					_	
System loss factors AC wire loss inverter to transfo Inverter voltage 800 Vac tri Wires: 3x20000.0 mm² 596 m Loss Fraction 0.6 % at STC External transformer Iron loss (24H connexion) 10282 W Loss Fraction 0.1 % at STC Resistive/Inductive losses 1.08 mOhm Loss Fraction 1.2 % at STC	0°	25°	45° 0.995	60° 0.962	0	65° .936	70° 0.903	75° 0.851	80°		.000
	System loss factor AC wire loss inverte External transforme	ors er to transfo er	Wires: Iron loss i Resistive/	Inverter vol 3x20000.0 r (24H connex Inductive lo	tage nm² (kon) sses	800 V 596 n 1028: 1.08 n	/ac tri n 2 W mOhm	Loss F Loss F Loss F	raction raction	0.6 % a 0.1 % a 1.2 % a	it STC it STC it STC
P/avet Licensed to Solements (Germany)	PVavat Licensed to Solements (Or	(waaw)									

PVsyst Licensed to Solarprads (Germany)

the court			PVSYS	ST V6.86	Solarpra	axis (Ger	many) 2	8/02/20	Page 4/5
SOLA	RPR	AXI			info	@solarp	raxis.cor	m	
		engineerin	8			-			
Grid-Connected System: Main results									
Project :	Harre								
Simulation variant :	Fix tilt								
Main system parameter	8	S	ystem type	Sheda	s on grou	nd			
Near Shadings		Accordin	g to string	8		Electric	cal effect	100 %	
PV Field Orientation			ti	t 25°			azimuth	0°	
PV modules			Mode	LR4-7	2 HBD 43	5 M- fk	Pnom	435 Wp	
PV modules			Mode	LR4-7	2 HBD 44	0 M- fk	Pnom	440 Wp	
PV Array		Nb.	of module	s 15808		Pr	nom total	6932 kV	Vp
Inverter			Mode	SUN2	000-105K1	L-H1-fk	Pnom	105 kW	80
Inverter pack			Nb. of unit	s 51.0		Pr	nom total	5355 kV	Vac
User's needs		Unlimited	load (grid)					
Main simulation results									
System Production	_	Produc	ed Energy	7311	MWh/yea	r Spec	ific prod.	1055 kV	Wh/kWp/year
	F	erformance	e Ratio Pi	R 82.62	%				
Normalized productions (per in	stalled kWp):	Nominal pow	er 6932 kWp			Perfo	mance Ratio	PR	
4				1.	0				
- Lo: Caliection Loss (PV	erray losses)	0.51 KWWWW	Nay		PR:	Portomence Rate	(11/1): 0.826	6 1 1	
7 La : System Loss (Inven YT : Produced useful ene	ngy (inverter output)	2.69 KWh/kWp/d	any -		1				
3 -			- 1	0.	ŧ	_			1
				F 0.	作				- 1
칠 한 👘			- 1	8 0.	• E				4
₹ 4- 1		1000	-	5 0.					-
A -									
3°C 📻 🖬 🖉			1	2					
2			-	0.	°				
				0.	2				
				0.	1				
Jan Feb Mar Apr Ma	y Jun Jul /	wag Seep Oct	Nov Deo	٥.	Jean Feb	Mer Apr M	kay Jun Jul	Aug Sep	Oot Nov Deo
				ix tilt					
		1	Balances a	nd main r	esuits				_
	GlobHor kWh/m²	Difficience kWh/m2	T_Amb °C	GlobInc kWh/m2	GlobEff kWh/m2	EArray	E_Grid	PR	
January	14.2	8.20	1.60	30.4	20.2	116	105	0.502	1
February	30.8	14.70	1.20	54.1	41.5	250	239	0.638	
March	79.4	29.60	2.90	115.1	102.6	621	603	0.755	
April	120.8	52.50	7.30	144.8	135.2	936	909	0.906	
June	177.2	77.40	13.90	182.3	170.1	1166	1134	0.897	
July	166.9	75.30	15.80	176.3	164.4	1116	1085	0.888	
August	132.5	67.70	16.90	151.3	140.8	952	925	0.881	
September	88.6	40.20	13.70	114.4	105.4	679	658	0.830	
November	17.8	11.50	5.80	31.6	22.5	134	124	0.567	
December	10.8	7.10	2.50	23.8	15.1	85	76	0.459	1
Year	1054.9	483.50	8.61	1276.5	1145.3	7555	7311	0.826]
Longovity City	Hor Horizo	ni ledolo leto	fistion		Clobert	Effortion Cial	hal over for	TAM and share	lines
Diff	Hor Horiza	intal diffuse in	adiation		EArray	Effective ene	rgy at the out	but of the ar	Tay
T_A						_			
CT. 1	mo iam	D.			E_G10	Energy Inject	ed into grid		
Giot	mo iami binc Globa	b. I incident in co	II. plane		e_gind Pr	Energy Inject Performance	Ratio		
Gior	mo Tami blinc Globa	b. I incident in co	II. plane		e_gnd Pr	Energy Inject Performance	ed into grid Ratio		

PVsyst Licensed to Solarpracts (Germany)

COLADDDA)	PVSYS	T V6.86 Solarpraxis (Germany) 28/02/20 Page 5/5
	neering	info@solarpraxis.com
Grid-C	onnected S	vetem: Loss diagram
Project · Harre		
Simulation variant : Fix tilt		
Main system parameters	System type	Sheds on ground
Near Shadings Acc	cording to strings	Electrical effect 100 %
PV Field Orientation	til	25° azimuth 0°
PV modules	Mode	LR4-72 HBD 435 M- fk Pnom 435 Wp
PV modules	Mode	LR4-72 HBD 440 M- fk Pnom 440 Wp
PV Array	Nb. of modules	15808 Pnom total 6932 kWp
Inverter	Mode	SUN2000-105KTL-H1-fk Pnom 105 kW ac
Inverter pack	Nb. of units	51.0 Pnom total 5355 kW ac
User's needs Un	limited load (grid	
	Loss diagram	over the whole year
1055 kWh/m²	+21.0%	Horizontal global irradiation Global Incident In coll. plane Global incident below threshold
	-7.3%	Near Shadings: irradiance loss
	7-2.4%	AM factor on global
	+-1.0% (+0.1%	Solling loss factor Ground reflection on front side
	Bitaclal	
	Global Incid 296 kWh/m²	ent on ground n 51442 m²
	-70.0%	Ground reflection loss (albedo)
	-57.5%	View Factor for rear side
	(+16.1%	Sky diffuse on the rear side
	+2.2%	Beam effective on the rear side
1000 ACCE # 30 ACCE *** **	5.0%	Shadings loss on rear side Global Irradiance on rear side (64 kWh/m2)
1145 kWh/m² * 34360 m² coll.	ц.	Effective irradiation on collectors
8276 MUL	_	Array nominal enemy (at STC effic.)
	9-1.3%	PV loss due to irradiance level
	10-0.3%	PV loss due to temperature
	7-3.9%	Shadings: Electrical Loss acc. to strings
	-1.0%	LID - Light induced degradation
	-0.5%	Mismatch for back irradiance
	4-0.8%	Ohmic wiring loss
7568 MWh	d	erray virtual energy at MPP
	-1.2%	inverter Loss during operation (efficiency)
	10.0%	Inverter Loss over nominal Inv. power
	N0.0%	Inverter Loss over nominal inv. voltage
	0.0%	nverter Loss due to power threshold
	10.0%	nverter Loss que lo voltage triesnoid Night consumption
7463 MWh		Available Energy at Inverter Output
	-0.3%	AC ohmic loss
	9-1.8%	External transfo loss
7311 MWh	ا ل	Energy injected into grid

PVayat Licensed to Solarpraces (Germany)

渁

COLARD	PVSYST	V6.86 Solarpraxis (Germany) 28/02	2/20 Page 1/5
SOLARP	KAXI3 engineering	info@solarpraxis.com	
Grid	Connected System	n: Simulation parameters	
Project · Han	,		
Geographical Site	Harra -DK	Country De	omark
	Latitude.	56 70° N	
Time defined as	Legal Time	Time zone UT+1 Altitude 30	m
	Albedo	0.20	
Meteo data:	Harre -DK	DMI 2001-2010 - Synthetic	
Simulation variant : Sing	le Axis		
	Simulation date	28/02/20 10h15	
Simulation parameters	System type	Tracking system with backtracking	
Tracking plane, tilted Axis	Axis Tilt	0° Axis Azimuth 11°	
Rotation Limitations	Minimum Phi Tracking algorithm	-55° Maximum Phi 55° Astronomic calculation	•
	Tracking algorithm		
Backtracking strategy	Nb. of trackers	275 Identical arrays	
	Tracker Spacing	5.00 m Collector width 2.1	10 m
Backtracking limit angle	Phi limits	+/- 64.9° Ground cov. Ratio (GCR) 42.	.1 %
Models used	Transposition	Perez Diffuse Pe	rez, Meteonorm
Horizon	Free Horizon		
Near Shadings	According to strings	Electrical effect 10	0%
Bifacial system	Model	Unlimited trackers, 2D calculation	
	Tracker Spacing	5.00 m Tracker width 2.1	14 m
	Ground albedo	30.0 % Axis height above ground 1.5	50 m
	Module bifaciality factor	75 % Rear shading factor 5.0	0 %
	Module transparency	0.0 % Rear mismatch loss 10.	.0 %
User's needs :	Unlimited load (grid)		
PV Arrays Characteristics (2	kinds of array defined)		
Sub-array "Single Axis 435"	Si-mono Model	LR4-72 HBD 435 M- fk	
Custom parameters definition	Manufacturer	Longi Solar	
Number of PV modules	In series	26 modules In parallel 986	6 strings
Array diobal power	Nominal (STC)	11152 kWp At operating cond. 101	119 kWp (50°C)
Array operating characteristics (5	O°C) U mpp	947 V I mpp 106	581 A
Sub-array "Single Axis 440"	Si-mono Model	LR4-72 HBD 440 M- fk	
Number of PV modules	In series	26 modules In parallel 230	02 strings
Total number of PV modules	Nb. modules	59852 Unit Nom. Power 440	0 Wp
Array global power Array operating characteristics (5	Nominal (STC) 0°C) U mpp	26335 kWp At operating cond. 239 950 V I mpp 251	906 kWp (50°C) 160 A
Total Arrays global power	Nominal (STC)	37487 kWp Total 854	488 modules
	Module area	185814 m ² Cell area 169	9636 m²
Inverter	Model	SUN2000-105KTL-H1-fk	
Custom parameters definition	Manufacturer	Huawei Technologies	-
Characteristics	Operating Voltage	Max. power (=>25°C) 110	5 kWac 6 kWac

1		PVS	YST V6.8	6 Solarpra	xis (Germa	any) 28/0	2/20 P	age 2/5
-Q-SOLAR	R P R A X	eering		info	@solarpra	xis.com		
Grid Connected System: Simulation parameters								
Sub-array "Single Axis 43	15"	Nb. of invert	ters 82 u	nits	Total	Power 86	510 kWac	
Sub-array "Single Axis 44	10"	Nb. of inver	ters 192	units	Pnor Total Pnor	n ratio 1. Power 20 n ratio 1.	30 0160 kWac 31	
Total		Nb. of inver	ters 274		Total	Power 28	8770 kWac	
Total PV Array loss factors Array Solling Losses Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degrada Module Quality Loss Module Mismatch Losses Incidence effect (IAM): User 0° 25° 1.000 1.000 System loss factors AC wire loss inverter to tran External transformer	ttion defined profile 45° 0 0.995 sfo Wires: 3 Iron loss (Resistive/	Nb. of invert	ters 274 net) 29.0 y#1 1.5 n y#2 0.63 obal 65° 0.936 age 800 ' m ² 110 (oon) 5560 ses 0.200	W/mªK nOhm mOhm 0.903 Vac tri m 2 W 0 mOhm	Prior Total Loss Fr Loss Fr Loss Fr Loss Fr Loss Fr 0.851 Loss Fr Loss Fr Loss Fr Loss Fr	raction 1. (wind) 0. raction 1. (wind) 0. raction 1. raction 1. raction 1. raction 1. raction 1. raction 1. raction 1. raction 1. raction 0. raction 0. raction 0. raction 1.	31 3770 kWac 0 % 0 W/m ³ K / 5 % at STC 5 % at STC 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %	m/s
PVayst Licensed to Solarprada (Germany)								

PVayst Licensed to Solarprada (Germany)

-0-50		PR	XI	PVSYS	T V6.86	Solarpr	axis (Geri	many) 2	8/02/20	Page 4/5
A 20	LAN		engineerin	g		info	@solarp	raxis.com	m	
		0	d Coor	a a ta a l	Custon	. Main	reculto			
Grid-Connected System: Main results										
Project :		Harre								
Simulation var	lant :	Single A	xis							
Main system par	rameters		System type Tracking system with backtracking							
Near Shadings			According to strings			Electrical effect 100 %				
PV Field Unentati	ion	tracking	tracking, tilted axis, Axis Tilt			0° Axis Azimuth 11°				
PV modules				Mode	1 1 84-7		OM_ fr	Phom	430 Wp	
PV Array			Nb	of modules	85488		Pr	om totel	37487	Wo
Inverter				Mode	SUN20	00-105K	L-H1-fk	Pnom	105 kW	ac
Inverter pack				Nb. of units	274.0		Pr	om total	28770 k	Wac
User's needs			Unlimited	load (grid)					
Main simulation	resulte									
System Production	on		Produc	ed Energy	49166	MWh/ye	ar Spec	ific prod.	1312 kV	Vh/kWp/year
		Р	erformanc	e Ratio PF	8 92.80	%	1.0			1.12
Normalized productio	one (per Insta	lled kWp): N	iominel powe	* 37487 kW p			Perfor	mance Ratio	PR	
10					1.	°= '		1 1		
Lo: Calle	etion Loss (PV-em	y losses)	0.16 KWWWWW	day .	0.		m Ratio	0.928		
YT : Prode	uced useful energy	(Inverter output)	3.59 KWh/KWp	day _	0.					
				- 1	E					
× «-	1 mar 1			- 1	20					
8 t				1						
्र 🗠 🔛					- 0.					
					0.					
2 -					0.					
					0.					
Jan Feb Ma	r Apr Ney	Jun Jul A	ag Seep Oct	Nov Deo	0.	Jen Feb	Mer Apr M	ay Jun Jul	Aug Sep	Oot Nov Deo
				-	ala Avia					
			1	Balances a	nd main n	esults				
		GlobHor kWb/m ²	Difficient kWh/m²	T_Amb °C	GlobInc kWh/m ²	GlobEff kWh/m ²	EArray MWh	E_Grid MWb	PR]
Ja	nuary	14.2	8.20	1.60	20.0	17.7	705	651	0.857	1
Fe	bruary	30.8	14.70	1.20	43.5	40.0	1604	1540	0.944	
Ma	arch	79.4	29.60	2.90	112.8	106.5	4194	4074	0.963	
AP		120.8	52.50	7.30	162.5	211 9	5968	5803	0.953	
Ju	ne	177.2	77.40	13.90	236.3	224.3	8410	8178	0.923	
Jul	ly	166.9	75.30	15.80	221.7	210.1	7833	7616	0.917	
Au	gust	132.5	67.70	16.90	171.6	161.9	6114	5944	0.924	
Se	tober	48.1	25.80	9.40	64.2	59.5	2322	2239	0.929	
No	wamber	17.8	11.50	5.80	22.5	20.1	802	748	0.888	
De	cember	10.8	7.10	2.50	14.5	12.6	502	451	0.832	4
Yes	ar	1054.9	483.50	8.61	1413.3	1332.7	50726	49166	0.928	1
Lege	ends: GlobHe	w Horizo	ntal global irra	diation		GlobEff	Effective Glob	al, corr. for	IAM and shad	lings
	DiffHo	Horizo	ntal diffuse Im	adiation		ЕАттау	Effective ener	rgy at the ou	tput of the ar	тау
	T_Ami	Tamb	incident in set			E_Grid	Energy Inject	ed into grid		
	GEODIN	0000	incluent in co	- pare			renormance	1000		

PVsyst Licensed to Solarprade (Germany)

SOLAL		PVSYS	T V6.86 Solarpraxis (Germany) 28/02/20 Page 5/5			
SOLAT	engineering	5	info@solarpraxis.com			
Grid-Connected System: Loss diagram						
Project :	Harre					
Simulation variant :	Single Axis					
Mala austan assumption		nine tree	Teaching contact with backtooking			
Main system parameters	s Sy	stem type	Floating system with backtracking			
PV Field Orientation	tracking filted axis	Avis Tilt	O° Axis Azimuth 11°			
PV modules	industrig, once and	Model	LR4-72 HBD 435 M- fk Pnom 435 Wp			
PV modules		Model	LR4-72 HBD 440 M- fk Pnom 440 Wp			
PV Array	Nb. c	f modules	85488 Pnom total 37487 kWp			
Inverter		Model	SUN2000-105KTL-H1-fk Pnom 105 kW ac			
Inverter pack	N	lb. of units	274.0 Pnom total 28770 kW ac			
User's needs	Unlimited	load (grid)				
	Loss	diagram o	wer the whole year			
1055	(Wh/m²		lorizontal alobal irradiation			
		+34.0% 0	Biobal incident in coll. plane			
		0.01%	Robal Incident below threehold			
	N	9-3.3% M	Near Shedinos: irradiance loss			
	N N	3-2.0%	AM factor on clobal			
		-1.0% \$	Soiling loss factor			
	r	(+0.6% (Ground reflection on front side			
	-	B	I-facial			
		Global Incl 495 kWh/n	dent on ground n² on 433336 m²			
		-				
			-70.0%			
		1 4				
-68.9% View Factor for rear side						
d +272 49% Slov diffuse on the more side						
		T	oxy diffuse on the real side			
		10.0% E	Beam effective on the rear side			
		9.8%	Slobel Irradiance on rear side (131 kWh/m2)			
1333 kW	h/m² * 185814 m² coll.		ffective irradiation on collectors			
efficien	cy at STC = 20.19%		V conversion, Bifaciality factor = 0.75			
	53670 MWh	No.104	Array nominal energy (at STC effic.)			
		→-0.6% F	V loss due to temperature			
		0.0% 5	Shadings: Electrical Loss acc. to strings			
		-1.0% L	ID - Light induced degradation			
	1	4-0.9% N	Aismatch for back imadiance			
.		-0.9% (Dhmic wiring loss			
	30640 MVVN		ALLEN AILTURI BUBLÖN BE WILL.			
	1	9-1.2%	nverter Loss during operation (efficiency)			
	8	+0.0%	nverter Loss over nominal inv. power nverter Loss due to max, input current			
	t t	+0.0%	nverter Loss over nominal inv. voltage			
	4	+0.0% I	nverter Loss due to power threshold			
	N	10.0% M	light consumption			
6	0121 MWh	1	Available Energy at Inverter Output			
	t.	→-0.3% A	AC ohmic loss			
	0166 1010	\$-1.6% E	External transfo loss			
4	8100 MWN		ruergy injected into grid			

PVayat Licensed to Solarpraces (Germany)